Qualitative Stability Patterns for Lotka-Volterra Systems on Rectangles
نویسندگان
چکیده
We present a qualitative analysis of the Lotka-Volterra differential equation within rectangles that are transverse with respect to the flow. In similar way to existing works on affine systems (and positively invariant rectangles), we consider here nonlinear Lotka-Volterra n-dimensional equation, in rectangles with any kind of tranverse patterns. We give necessary and sufficient conditions for the existence of symmetrically transverse rectangles (containing the positive equilibrium), giving notably the method to build such rectangles. We also analyse the stability of the equilibrium thanks to this transverse pattern. We finally propose an analysis of the dynamical behavior inside a rectangle containing the positive equilibrium, based on Lyapunov stability theory. More particularly, we make use of Lyapunov-like functions, built upon vector norms. This work is a first step towards a qualitative abstraction and simulation of Lotka-Volterra systems. Key-words: Dynamical systems, Lotka-Volterra equation, Transverse rectangle, Qualitative analysis, Vector norms Lyapunov functions. ∗ [email protected] † [email protected] Analyse qualitative des systèmes de Lotka-Volterra sur des rectangles Résumé : Ce travail pose les bases d’une étude qualitative des systèmes dynamiques de LotkaVolterra, fondée sur l’étude de rectangles transverses par rapport au flot. Comparativement à de précédentes études similaires, nous nous intéressons ici à des rectangles non nécessairement positivement invariants, et les résultats présentés ne se limitent pas au cas linéaire mais sont généralisés au cas non linéaire (de dimension n) de Lotka-Volterra. Nous donnons notamment des conditions nécessaires et suffisantes pour l’existence de rectangles symétriquement transverses (qui donc contiennent l’équilibre positif) en proposant une méthode pour les construire. Ces conditions nous permettent en outre de déduire du patron de ces rectangles le type de stabilité de l’équilibre. Nous proposons enfin une analyse de la dynamique du système à l’intérieur de ces rectangles, en utilisant la théorie générale de stabilité de Lyapunov. Les fonctions de type Lyapunov que nous construisons ici utilisent des normes vectorielles. Ce travail doit être vu comme une première étape vers une analyse qualitative de la dynamique de l’équation non linéaire de Lotka-Volterra. Mots-clés : Systèmes dynamiques, Equation de Lotka-Volterra, Rectangle transverse au flot, Analyse qualitative, Fonctions de Lyapunov basées sur des normes vectorielles. Qualitative stability patterns for Lotka-Volterra systems on rectangles 3
منابع مشابه
The Stability of Some Systems of Harvested Lotka-Volterra Predator-Prey Equations
Some scientists are interesting to study in area of harvested ecological modelling. The harvested population dynamics is more realistic than other ecological models. In the present paper, some of the Lotka-Volterra predator-prey models have been considered. In the said models, existing species are harvested by constant or variable growth rates. The behavior of their solutions has been analyzed ...
متن کاملAn Analysis on The Lotka-Volterra Food Chain Model: Stability
The food chain refers to a natural system by which energy is transmitted from one organism to another. In fact, a food chain consists of producers, consumers and decomposition. Presence of complex food web increase the stability of the ecosystem. Classical food chain theory arises from Lotka-Volterra model. In the present paper, the dynamics behavior of three level food chain is studied. A syst...
متن کاملGlobal stability of interior and boundary fixed points for Lotka-Volterra systems
For permanent and partially permanent, uniformly bounded Lotka-Volterra systems, we apply the Split Lyapunov function technique developed for competitive Lotka-Volterra systems to find new conditions that an interior or boundary fixed point of a Lotka-Volterra system with general species-species interactions is globally asymptotically stable. Unlike previous applications of the Split Lyapunov t...
متن کاملQualitative Analysis for A Lotka-Volterra Model with Time Delays
This paper considers a Lotka-Volterra model with time delays and delay dependent parameters. The linear stability conditions are obtained with characteristic root method. The Hopf bifurcation is demonstrated. Using normal form theory and center manifold theory, Some explicit formulae for determining the stability and the direction of the Hopf bifurcation periodic solutions are derived. Finally,...
متن کاملOn Neutral-delay Two-species Lotka-volterra Competitive Systems
The qualitative behaviorof positive solutions of the neutral-delay two-species LotkaVolterra competitive system with several discrete delays is investigated. Sufficient conditions are obtained for the local asymptotic stability of the positive steady state. In fact, some of these sufficient conditions are also necessary except at those critical values. Results on the oscillatory and non-oscilla...
متن کامل